Acura Automobiles: 2017 Acura NSX Press Kit

Design Concept
The exterior design of the all-new 2017 Acura NSX reflects the integration of exotic supercar aesthetics and exceptional supercar performance. The “Interwoven Dynamic” overarching design theme for the exterior architecture epitomizes the concept of “form following function,” as every character line, body panel shape or crease, air flow inlet/outlet, and even the vehicle’s overall proportions have been designed to create a New Sports eXperience. Accordingly, each aspect of the NSX’s exterior architecture has been optimized to support the dynamic capabilities of the NSX while advancing Acura design into the future.

Key Exterior Features

  • Optimization of exterior design for aerodynamic efficiency (drag and downforce), power unit intake air and cooling, and brake cooling using a “total airflow management” approach
  • Composite and aluminum body panels
  • Aluminum or optional exposed-weave carbon fiber roof panel
  • Acura Jewel Eye™ LED headlights with auto-on/off
  • Smart Entry/Push Button Start keyless access system
  • Flush-mounted automatic power pop-out door handles
  • Body-colored power heated side mirrors with reverse auto tilt-down and integrated LED turn indicators
  • LED brake lights
  • Acoustic glass windshield and rear windscreen
  • Capless fuel filler

Exterior Styling
Every square inch of the Acura NSX’s exterior body panel surfaces, fluid shapes, air inlets/exhaust outlets and even the positioning/shaping/thickness of the floating C-pillars serves a distinct purpose—one that has been carefully calculated through thousands of hours of complex computational fluid dynamics (CFD) in combination with extensive wind tunnel testing in the company’s advanced facilities in the United States and in Japan.

“The idea that form follows function is fundamental to Acura design, and this philosophy is interwoven in the core of NSX, which is why our exterior concept is called “Interwoven Dynamic,” said Michelle Christensen, exterior design project leader in the Los Angeles based Acura Design Studio. “The NSX is a visual expression of beautiful design and performance working together, influencing every decision we made—every surface, every millimeter, every design element of the new NSX is focused on enhancing performance.

From the acutely angled slope of the chiseled aluminum hood to the rakishly shaped Acura Jewel Eye™ LED headlights and tapered front grille, the front is supercar sleek. The distinctive headlights are bisected by massive mesh-covered air inlets from below and the front fenders are highlighted by a sharply creased character line running all the way from the grille towards thinly sculpted A-pillars.

Remarkably compact overhangs, fore and aft, foretell the design and engineering team’s exemplary packaging of mechanical and electrical components, while the vehicle’s overall sleek yet muscular stance conveys a sense of purpose and power. The hood line, roofline, floating C-pillars and rear quarter appear as one distinctive and unified curve. The massive yet lightweight high- performance wheel and tire package fit within the arching wheel wells with minimal gap and perfect proportion.

The rear of the vehicle is equally striking, highlighted by the signature floating C-Pillars, which cascade gently from the roofline to just forward of the integrated spoiler at the trailing edge of the rear deck lid, flanking an expansive glass panel that reveals the twin-turbocharged V-6 engine.

Further accentuating the exterior architecture of the new NSX are a choice of eight paint schemes, each color in the rich palette carefully selected and engineered to accentuate the exterior’s bold design while ushering in a new level of paint quality within the supercar segment (see Colors and Options for additional detail).

Floating C-Pillars
The floating C-pillars integrated into the exterior architecture of the all-new NSX are as purposeful as they are distinctive, supporting efficient body-side airflow. The C-pillars extend outward from the sloping rear roofline so that, as air flows down the sides of the vehicle, it is efficiently rerouted into the side-mounted engine air intakes. The floating C-pillars also aid engine cooling by creating a negative pressure zone around the rear heat exhaust vents, along the outside edges of the rear windscreen, improving the efficiency of hot air exhaustion. The portion of air that flows down the side of the vehicle toward the outside section of the buttress is conditioned to reduce turbulence as it passes with minimal disruption over the rear fender and spoiler.

Door Handles Trunk Access
The flush-fitting exterior door handles are both aesthetically pleasing and functional, providing a welcoming “handshake” with the driver/passenger as they extend outward from the door upon approach while at the same time supporting clean airflow along the body side.

Smart Entry with keyless access is enabled by both proximity sensors, tied to the remote key fob, and capacitive touch sensors in the exterior door handles. A proximity sensor actuates the door handles upon approach, extending them outward for easy operation. Grasping either door handle activates a capacitive touch sensor, which initiates door unlocking. Once the driver/passenger releases the handle, it returns to the flush position. The doors can also be unlocked using the remote key fob—a single push of the unlock button extends the driver’s door handle and simultaneously unlocks the driver’s door, while a double push of the button extends both door handles and unlocks both doors.

Upon exiting the vehicle, the driver/passenger can lock the vehicle by simply touching a button positioned just forward of the handle or by depressing the lock button on the remote key fob.

The exterior door handle mechanism is both a mechanical and electrically operated system. As is the case with an electronically operated system on a vehicle such as an EV, the driver/passenger can sometimes be locked out of the vehicle due to an onboard power failure; this is impossible with the NSX thanks to a redundant mechanical system that allows the driver/passenger to manually operate the door handle without electrical assistance. Automatic door handle extension can be disabled by a switch in the glove box for shipping or long-term storage.

The trunk is accessed by means of the remote key fob, by a button located on the driver’s interior door panel, or by a button discretely located under the trailing edge of the trunk lid. In the event of a loss of power, both the driver’s door and the trunk also feature a traditional key cylinder for manual locking/unlocking of the doors and trunk.

Supercar Wiper/Washer system
The wiper/washer system, engineered specifically for the new NSX, has been designed to operate effectively even at maximum vehicle speeds. Tested in the wind tunnel at airflow equivalent of over 180 mph, the spoiler-shaped wiper blades generate downforce on the wiper blade, while the speed-controlled wiper motor maintains a constant wiping speed, ensuring effective wiper performance in all driving conditions. Likewise, the windshield washer system utilizes a three-nozzle system for superior coverage in all conditions and driving environments, including high-speed travel.

In a further nod to improving forward visibility and providing an unobstructed view of the road, the windshield wiper arms are placed as low as possible at the base of the windshield/lower cowl section so that they remain completely out of the driver’s view when not in operation.  Placing the wipers below the hood also helps mitigate wind noise.

Door Mirrors
Featuring a two-tone paint scheme that accentuates the NSX’s low-slung look and wide stance, the door mirrors include a thin blade arm to minimize air turbulence as air flows along the side of the vehicle. This reduces local airflow noise, prevents disruption of air flowing to the side intakes, and minimizes aerodynamic drag. And like the ultra-high-strength A-pillars, the thin blade arm design improves visibility when parking and cornering. Each mirror housing includes an LED turn signal.

LED Lighting
The exterior design of the 2017 NSX features a variety of light-emitting diode (LED) lighting, including Acura Jewel Eye™ LED headlights, LED daytime running lights (DRL), and LED taillights.

Acura Jewel Eye LED Headlights
Acura Jewel Eye LED headlights are a standard feature on every NSX. Designed to complement the aggressive low and wide exterior appearance, each headlight assembly contains six individual LEDs, with the four outer LEDs in operation when using the low beam setting, and all six at work when the high beams are activated.

Acura Jewel Eye LEDs provide superior down-the-road illumination with outstanding light distribution and light characteristics and a wavelength close to the human eye’s luminosity curve. With their lower electrical power consumption, the NSX’s Jewel Eye LED headlights also have a longer operational life compared to traditional halogen or high-intensity discharge (HID) lamps.

LED Daytime Running Lights (DRL)
Utilizing the top half of each LED headlamp that makes up the Acura Jewel Eye™ LED headlight assembly are the NSX’s LED daytime running lights (DRL). Located just beneath the LED headlamps are the LED position lights, composed of a series of small and tightly packed LEDs that run in a thin continuous line along the bottom of the headlight assembly. LED lighting is also used for the turn signals at both the front and rear of the vehicle.

LED Taillights
Similar in character to the Acura Jewel Eye LED headlights at the front of the vehicle, the LED taillights have a compact and narrow appearance with a uniquely freeform shape. The LED taillight array starts off wider, toward the center portion of the rear of the vehicle, then gently tapers as it wraps around towards the outside corners/rear fender arches.

Exterior Body Construction
The NSX’s multi-material body design concept extends throughout the entire body construction. By employing sheet molding composite (SMC), aluminum stampings and high temperature-resistant plastic in key locations of the body, the NSX design team takes advantage of each material’s unique characteristics to create exterior body panels of the highest finish quality while also minimizing vehicle mass, optimizing weight distribution and center of gravity, and helping to ensure outstanding longevity and durability.

Composite Panels
Used extensively in the construction of high-end exotic cars in key exterior componentry, SMC is a high-grade specialty glass-fiber reinforced polyester, its shape formed while heated under pressure within a compression molding. By utilizing special resins as well as high-strength fiber composite matting, NSX exterior design engineers have developed SMC material for specific applications on the vehicle’s exterior.

Specially engineered SMC material is used in the fender sections at all four corners. Designed to possess high structural rigidity, this unique SMC paneling makes an important contribution to optimizing the NSX’s overall center of mass by minimizing weight at all four corners. The rear trunk skin is also made of lightweight SMC, with structural support provided by a stamped aluminum inner frame structure.

A special, high temperature-resistant plastic is used in the small body panel sections just below the floating C-pillars (forward of the rear fenders) due to the body panels’ close proximity to the turbo intercoolers.

A rigid, structural SMC material has been developed for the NSX’s trunk internal structure. This highly rigid construction allows the trunk structure to serve as a mounting point for the rear fenders and rear bumper for a sturdy and precise fit. An added benefit of the trunk compartment design is that it allows for easy removal when the vehicle is brought into an Acura dealer for service; after removing the rear fascia, the entire trunk structure can be removed for easy access to the engine room. This design also simplifies replacement of the rear section should the NSX be involved in a rear-end collision.

Aluminum Panels
The NSX door skins are made of sheet hydroformed aluminum. Sheet hydroforming is the ideal means to shape the one-piece aluminum panels that make up each door, as the process supports the construction of complex shapes that cannot be formed by conventional stamping techniques. Moreover, the aluminum door skins can be relatively thin and light as they are naturally supported by the inner door structure.

The hood, roof panel and the engine compartment/trunk frame are composed of high-grade stamped aluminum. A carbon fiber roof panel is optional. Like the other composite materials utilized in the exterior, the use of aluminum in these areas offers light weight with excellent structural rigidity and surface quality.

Body Panel Fitment
As the near final step in the vehicle assembly process at the Performance Manufacturing Center, the exterior body panels are attached to the vehicle’s space frame, starting with the roof, then the doors, etc., working from the top down. This process, along with the high degree of dimensional accuracy for the underlying space frame, allows for fine adjustment of panels to achieve consistent and symmetrical panel gaps.

Aerodynamics: A “Total Airflow Management” Approach
To support the NSX’s ambitious performance targets, innovative packaging design and exotic styling, the development team completely reimagined the exterior engineering for this modern supercar so that maximum energy is extracted from the flow of air around and through the NSX with the highest efficiency. This “total airflow management” strategy supports complete power unit cooling and air intake, brake system cooling, and aerodynamic performance—drag and downforce—at a very high level.

Computational fluid dynamics (CFD) was used extensively during development to maximize the performance of the power unit cooling systems: First, for the proof-of-concept in establishing heat management strategy at the earliest development stage; and second, for continuous thermal performance improvement as the vehicle matured through development.

Along with the use of advanced CFD, wind tunnel and real-world testing, the development team employed computerized lap-time simulation models of some of the world’s most legendary proving grounds that could then be run on chassis-dynamometers allowing testing and validation of computer models for thermal management.

Aerodynamic Design Highlights:

  • Efficient cooling openings at the front of the vehicle maximize cooling airflow across the key heat exchangers located within the front section (front engine radiators, Twin Motor Unit cooler, condenser, the transmission gear cooler, hybrid Power Distribution Unit).
  • Optimized front exit flow paths consider total flow, maximum downforce, low coefficient of drag, and downstream flow structure to feed the engine air intakes.
  • Wheel wake management vents work in conjunction with fender vents to stabilize airflow down the side of the vehicle, allowing the air to smoothly enter the signature side intakes for efficient cooling. The air that enters the side intakes is distributed to three areas: engine intake, engine room cooling, and turbo intercoolers.
  • Air flowing over the roof and down the rear glass is captured to feed the transmission clutch cooler and introduce engine-room cooling flow.
  • Airflow across the rear deck lid works in concert with the taillight slots and rear diffuser to generate significant downforce and effectively manage the air wake generated behind the vehicle. It also minimizes the low-pressure wake coming off the rear of the vehicle and therefore minimizes drag.
  • Optimization of front/rear downforce distribution for improved handling and stability
  • Rear brake cooling air ducts designed into the hollow sub-frame direct cooling air to the rear brakes using specially tuned air deflectors located on the rear suspension arms.

Supercar Aero
NSX achieves top-class aerodynamic balance and supercar aerodynamic downforce. Aerodynamic drag is minimized, even while moving large airflows through the vehicle to cool the power unit. Aerodynamic downforce is created by utilizing airflow through each vent, as the NSX “exhales,” and through more traditional aerodynamic shape optimization.

The NSX has undergone extensive testing at the company’s state-of-the-art wind tunnel in Raymond, Ohio, using ultra-detailed 40-percent-scale models that replicate the suspension, wheel/tiire, intake and exhaust vents, heat exchangers and major under-hood components. The NSX has also been verified and further refined through testing at full scale in the company’s wind tunnel in Tochigi, Japan and on real and simulated proving grounds throughout the world.

Airflow management vents and precision ducting were tuned to optimize forms with aerodynamicist and designer input during wind tunnel test sessions.  A 3-to-1 downforce ratio—placing three times as much downforce at the rear as at the front of the car—provides the optimal balance for high-performance driving as well as everyday functionality.

Six vortices flow at the rear of the NSX, including those that support the highest downforce across the rear deck lid.  Air flowing from below the car and exiting through carefully optimized rear diffuser fins is a critical vortex that further anchors NSX to the ground. Uniquely, the fins are not parallel to each other, but are narrower toward the front of the car and wider at the rear. This design amplifies negative pressure, enhancing diffuser efficiency which further maximizes downforce.

Of note, the NSX aerothermal team worked to evaluate thermal loading in racetrack conditions using a chassis dynamometer. In addition to simulating key performance parameters, such as engine speed and braking, the test included varying wind speeds based on real-world track data. Simulations included Sebring International Raceway and Virginia International Raceway, the latter serving as one of the primary development tracks for the new NSX.

NSX Exterior Finish/Paint
The NSX paint team at Acura’s innovative new Performance Manufacturing Center targeted the highest levels of paint quality with reduced environmental impact, consistent with their target of next-generation quality and craftsmanship.

NSX Body Panel Paint Process:
Because the NSX’s exterior body panels are not attached to its space frame until the conclusion of the vehicle assembly process, body panels are treated and painted separately from the frame (see Body for more detail) and are finished to an exceptional level of quality and luster by expert technicians at the Acura Performance Manufacturing Center.

  1. NSX body panels enter the paint process attached to a specially designed fixture that locates the panels in a position and angle similar to how they are oriented once installed on the vehicle.
  2. All body panels are covered with a high-quality primer coat and, depending upon the specific color application, then receive between five and seven coats of paint. Each layer of colored paint applied to the body panels is allowed to fully cure prior to the next application.
  3. A high-quality/long-lasting clear coat is then applied.
  4. To help minimize the potential for “orange peel,” which occurs when the clear coat on vertical body panels is pulled down by gravity during the curing process, the body paint fixture has hinges that allow the vertically oriented body panels—doors and fenders—to be rotated to a near-fully horizontal position during the curing process.
  5. Once cured, the panels undergo careful inspection in a newly designed inspection booth utilizing high-intensity LED lighting to help associates identify and address even the smallest irregularities.
  6. Body panels are then hand finished after the first layer of clear coat, and again after the second clear coat.